Neutral amino acid transport at the human blood-brain barrier.

نویسندگان

  • W M Pardridge
  • T B Choi
چکیده

Transport regulates nutrient availability in the brain, and many pathways of brain amino acid metabolism are influenced by precursor supply. Therefore, amino acid transport through the blood-brain barrier (BBB) plays an important rate-affecting role in brain metabolism. Information on the Km of BBB amino acid transport provides the quantitative basis for understanding the physiological importance of BBB transport competition effects. For example, the uniquely low Km values of BBB amino acid transport as compared to other organs in the rat provides the basis for the selective vulnerability of the rat brain to changes in amino acid supply caused by nutritional factors. The development of amino acid imbalances in the human brain in parallel with amino acid imbalances in blood is likely to occur if the Km of BBB neutral amino acid transport in humans is low, e.g., 25-100 microM, as is the case for the rat. A new model system of the human BBB, the isolated human brain capillary, has been developed. Recent studies with this system indicate that the Km of phenylalanine transport into human brain microvessels is approximately the same as that found during in vivo studies with laboratory rats. These results support the emerging hypothesis that the human brain, like the rat brain, is subject to acute regulation by dietary-related amino acid imbalances, and that the major site of this regulation is the amino acid transport system at the BBB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries.

Capillary endothelial cells isolated from rat brain exhibit Na+-dependent uptake of the neutral amino acid analog alpha-(methylamino)isobutyric acid. Since studies in vivo demonstrate that this transport system is not present on the blood side of brain capillaries we conclude that Na+-dependent neutral amino acid transport is located on the brain side. Therefore, the luminal plasma membrane and...

متن کامل

Inhibition of neutral amino acid transport across the human blood-brain barrier by phenylalanine.

The delivery of large neutral amino acids (LNAAs) to brain across the blood-brain barrier (BBB) is mediated by the L-type neutral amino acid transporter present in the membranes of the brain capillary endothelial cell. In experimental animals, the L-system transporter is saturated under normal conditions, and therefore an elevation in the plasma concentration of one LNAA will reduce brain uptak...

متن کامل

Na+ -dependent neutral amino acid transporters A, ASC, and N of the blood-brain barrier: mechanisms for neutral amino acid removal.

Four Na+ -dependent transporters of neutral amino acids (NAA) are known to exist in the abluminal membranes (brain side) of the blood-brain barrier (BBB). This article describes the kinetic characteristics of systems A, ASC, and N that, together with the recently described Na+ -dependent system for large NAA (Na+ -LNAA), provide a basis for understanding the functional organization of the BBB. ...

متن کامل

Blood-brain barrier transport of 1-aminocyclohexanecarboxylic acid, a nonmetabolizable amino acid for in vivo studies of brain transport.

Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex ...

متن کامل

Brain microvessels take up large neutral amino acids in exchange for glutamine. Cooperative role of Na+-dependent and Na+-independent systems.

Some regulatory aspects of neutral amino acid transport were investigated in isolated brain microvessels, an in vitro model of the blood-brain barrier. Preloading of the microvessels with glutamine stimulated the subsequent uptake of other neutral amino acids by way of the Na+-independent L system, but had no effect on the uptake of either basic or acidic amino acids. Moreover, this stimulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 36  شماره 

صفحات  -

تاریخ انتشار 1986